Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496612

RESUMO

α-synuclein (αSyn) is a presynaptic and nuclear protein that aggregates in important neurodegenerative diseases such as Parkinson's Disease (PD), Parkinson's Disease Dementia (PDD) and Lewy Body Dementia (LBD). Our past work suggests that nuclear αSyn may regulate forms of DNA double-strand break (DSB) repair in HAP1 cells after DNA damage induction with the chemotherapeutic agent bleomycin1. Here, we report that genetic deletion of αSyn specifically impairs the non-homologous end-joining (NHEJ) pathway of DSB repair using an extrachromosomal plasmid-based repair assay in HAP1 cells. Importantly, induction of a single DSB at a precise genomic location using a CRISPR/Cas9 lentiviral approach also showed the importance of αSyn in regulating NHEJ in HAP1 cells and primary mouse cortical neuron cultures. This modulation of DSB repair is dependent on the activity of the DNA damage response signaling kinase DNA-PKcs, since the effect of αSyn loss-of-function is reversed by DNA-PKcs inhibition. Using in vivo multiphoton imaging in mouse cortex after induction of αSyn pathology, we find an increase in longitudinal cell survival of inclusion-bearing neurons after Polo-like kinase (PLK) inhibition, which is associated with an increase in the amount of aggregated αSyn within inclusions. Together, these findings suggest that αSyn plays an important physiologic role in regulating DSB repair in both a transformed cell line and in primary cortical neurons. Loss of this nuclear function may contribute to the neuronal genomic instability detected in PD, PDD and DLB and points to DNA-PKcs and PLK as potential therapeutic targets.

2.
Nat Aging ; 4(1): 7-9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191688
3.
Nat Commun ; 14(1): 8054, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052795

RESUMO

Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.


Assuntos
Ácido Hialurônico , Neoplasias , Animais , Longevidade/genética , Mamíferos , Ratos-Toupeira/genética , Mutação
4.
5.
Ageing Res Rev ; 92: 102132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984625

RESUMO

Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.


Assuntos
Infecções por HIV , Inibidores da Transcriptase Reversa , Humanos , Inibidores da Transcriptase Reversa/efeitos adversos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Reposicionamento de Medicamentos , Infecções por HIV/tratamento farmacológico , Envelhecimento
6.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030702

RESUMO

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Assuntos
Genoma , Ratos-Toupeira , Humanos , Cobaias , Animais , Sintenia , Hibridização in Situ Fluorescente , Cariótipo , Ratos-Toupeira/genética
7.
Cell Rep ; 42(9): 113130, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708026

RESUMO

The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.


Assuntos
Estresse do Retículo Endoplasmático , Longevidade , Animais , Longevidade/fisiologia , Resposta a Proteínas não Dobradas , Transcriptoma , Ratos-Toupeira
8.
Nature ; 621(7977): 196-205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612507

RESUMO

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Assuntos
Envelhecimento Saudável , Hialuronan Sintases , Ácido Hialurônico , Longevidade , Ratos-Toupeira , Animais , Camundongos , Ácido Hialurônico/biossíntese , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Transgênicos , Ratos-Toupeira/genética , Longevidade/genética , Longevidade/imunologia , Longevidade/fisiologia , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Transgenes/genética , Transgenes/fisiologia , Transcriptoma , Neoplasias/genética , Neoplasias/prevenção & controle , Estresse Oxidativo , Gerociência , Rejuvenescimento/fisiologia
9.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37269831

RESUMO

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , Envelhecimento/genética , Mamíferos/genética , Perfilação da Expressão Gênica
10.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215017

RESUMO

Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.

11.
J Clin Oncol ; 41(16): 2869-2876, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235976

RESUMO

PURPOSE: The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). PATIENTS AND METHODS: In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). RESULTS: A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatment-related adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. CONCLUSION: Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.

12.
Trends Mol Med ; 29(7): 530-540, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121869

RESUMO

Genomes are inherently unstable and require constant DNA repair to maintain their genetic information. However, selective pressure has optimized repair mechanisms in somatic cells only to allow transmitting genetic information to the next generation, not to maximize sequence integrity long beyond the reproductive age. Recent studies have confirmed that somatic mutations, due to errors during genome repair and replication, accumulate in tissues and organs of humans and model organisms. Here, we describe recent advances in the quantitative analysis of somatic mutations in vivo. We also review evidence for or against a possible causal role of somatic mutations in aging. Finally, we discuss options to prevent, delay or eliminate de novo, random somatic mutations as a cause of aging.


Assuntos
Envelhecimento , Reparo do DNA , Humanos , Mutação , Envelhecimento/genética , Genoma
13.
Cell ; 186(5): 901-903, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868212

RESUMO

Accelerating the development of tools for non-model animal research, Dejosez et al. report the generation of induced pluripotent stem cells (iPSCs) from bats using a modified Yamanaka protocol. Their study also reveals that bat genomes harbor diverse and unusually abundant endogenous retroviruses (ERVs) that are reactivated during iPSC reprogramming.


Assuntos
Quirópteros , Retrovirus Endógenos , Células-Tronco Pluripotentes Induzidas , Animais
15.
Subcell Biochem ; 102: 1-6, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36600127

RESUMO

We outline the progression of ageing research from ancient history to present day geroscience. Calorie restriction, genetic mutations, and the involvement of the sirtuins are highlighted, along with pharmaceutical interventions, in particular rapamycin. At the cellular level, replicative senescence and telomere shortening are presented in the history of ageing studies. We discuss the roles of macromolecular damage in ageing including damage to nuclear, and mitochondrial DNA, epigenetic and protein damage. The importance inflammation during ageing "inflammageing" is becoming increasingly recognized. Omics-based biomarkers are now proving to be a promising approach, along with comparative studies on long-lived animals. The science is getting closer to understanding the mechanisms of ageing and developing reliable interventions to improve human health.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Animais , Senescência Celular/genética , Envelhecimento/genética , DNA Mitocondrial/genética , Mutação , Mitocôndrias/genética
16.
Nat Rev Immunol ; 23(2): 75-89, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35831609

RESUMO

Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.


Assuntos
Envelhecimento , Dano ao DNA , Humanos , Envelhecimento/genética , Senescência Celular/genética , Inflamação/genética , Morte Celular
17.
Geroscience ; 45(2): 1177-1196, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36534275

RESUMO

Non-alcoholic fatty liver disease (NAFLD), encompassing fatty liver and its progression into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), is one of the rapidly rising health concerns worldwide. SIRT6 is an essential nuclear sirtuin that regulates numerous pathological processes including insulin resistance and inflammation, and recently it has been implicated in the amelioration of NAFLD progression. SIRT6 overexpression protects from formation of fibrotic lesions. However, the underlying molecular mechanisms are not fully delineated. Moreover, new allelic variants of SIRT6 (N308K/A313S) were recently associated with the longevity in Ashkenazi Jews by improving genome maintenance and DNA repair, suppressing transposons and killing cancer cells. Whether these new SIRT6 variants play different or enhanced roles in liver diseases is currently unknown. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect liver metabolism and associated diseases. We present evidence that overexpression of centenarian-associated SIRT6 variants dramatically altered the metabolomic and secretomic profiles of unchallenged immortalized human hepatocytes (IHH). Most amino acids were increased in the SIRT6 N308K/A313S overexpressing IHH when compared to IHH transfected with the SIRT6 wild-type sequence. Several unsaturated fatty acids and glycerophospholipids were increased, and ceramide tended to be decreased upon SIRT6 N308K/A313S overexpression. Furthermore, we found that overexpression of SIRT6 N308K/A313S in a 3D hepatic spheroid model formed by the co-culture of human immortalized hepatocytes (IHH) and hepatic stellate cells (LX2) inhibited collagen deposition and fibrotic gene expression in absence of metabolic or dietary challenges. Hence, our findings suggest that novel longevity associated SIRT6 N308K/A313S variants could favor the prevention of NASH by altering hepatocyte proteome and lipidome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Idoso de 80 Anos ou mais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Centenários , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Colágeno/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
18.
Front Aging ; 4: 1323194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322248

RESUMO

Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via in vivo partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined. To understand whether cellular reprogramming can ameliorate DNA damage, we created a reprogrammable accelerated aging mouse model with an ERCC1 mutation. Importantly, using enhanced partial reprogramming by combining small molecules with the Yamanaka factors, we observed potent reversion of DNA damage, significant upregulation of multiple DNA damage repair processes, and restoration of the epigenetic clock. In addition, we present evidence that pharmacological inhibition of ALK5 and ALK2 receptors in the TGFb pathway are able to phenocopy some benefits including epigenetic clock restoration suggesting a role in the mechanism of rejuvenation by partial reprogramming.

19.
EMBO J ; 41(21): e110393, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36215696

RESUMO

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Assuntos
Lamina Tipo A , Sirtuínas , Idoso de 80 Anos ou mais , Humanos , Centenários , Alelos , Instabilidade Genômica
20.
Nanoscale ; 14(39): 14594-14602, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36155714

RESUMO

Naked mole rats (NMRs) demonstrate exceptional longevity and resistance to cancer. Using a biochemical approach, it was previously shown that the treatment of mouse fibroblast cells with RasV12 oncogene and SV40 Large T antigen (viral oncoprotein) led to malignant transformations of cells. In contrast, NMR fibroblasts were resistant to malignant transformations upon this treatment. Here we demonstrate that atomic force microscopy (AFM) can provide information which is in agreement with the above finding, and further, adds unique information about the physical properties of cells that is impossible to obtain by other existing techniques. AFM indentation data were collected from individual cells and subsequently processed through the brush model to obtain information about the mechanics of the cell body (absolute values of the effective Young's moduli). Furthermore, information about the physical properties of the pericellular layer surrounding the cells was obtained. We found a statistically significant decrease in the rigidity of mouse cells after the treatment, whereas there was no significant change found in the rigidity of NMR cells upon the treatment. We also found that the treatment caused a substantial increase in a long part of the pericellular layer in NMR cells only (the long brush was defined as having a size of >10 microns). The mouse cells and smaller brush did not show statistically significant changes upon treatment. The observed change in cell mechanics is in agreement with the frequently observed decrease in cell rigidity during progression towards cancer. The change in the pericellular layer due to the malignant transformation of fibroblast cells has practically not been studied, though it was shown that the removal of part of the pericellular layer of NMR fibroblasts made the cells susceptible to malignant transformation. Although it is plausible to speculate that the observed increase in the long part of the brush layer of NMR cells might help cells to resist malignant transformations, the significance of the observed change in the pericellular layer is yet to be understood. As of now, we can conclude that changes in cell mechanics might be used as an indication of the resistance of NMR cells to malignant transformations.


Assuntos
Ratos-Toupeira , Neoplasias , Animais , Antígenos Virais de Tumores , Fibroblastos/patologia , Camundongos , Neoplasias/patologia , Proteínas Oncogênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...